Abstrait

Research on remote vehicle intelligent diagnosis based on KNN

Miu Kehua, Li xiaokun


This paper provides a remote vehicle diagnosis system, which is designed to locate the specific time when an occasional malfunction happened from the abundant vehicle’s ECU data flow. The system has been designed with an ability to learn by itself, using the wrong cases to retrain the classifier and raise system diagnosis rate. Through studying the occasional low-speed flameout, we come to a conclusion that 83.3% diagnosis rate and nanosecond-class diagnosis efficiency can totally meet requirement


Avertissement: testCe résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

  • CASS
  • Google Scholar
  • Ouvrir la porte J
  • Infrastructure nationale du savoir de Chine (CNKI)
  • CiterFactor
  • Cosmos SI
  • Répertoire d’indexation des revues de recherche (DRJI)
  • Laboratoires secrets des moteurs de recherche
  • Euro Pub
  • ICMJE

Voir plus

Flyer