Abstrait
Reactions: Surface science perspectives
Jackson Will
Around ten years ago, basic research on the surface science elements of plasma-assisted etching was started in labs all over the world. This experimentally difficult problem has been approached in a number of ways, including using directed beams of energetic positive ions and thermally energetic reactive molecules/radicals in a UHV environment to simulate the reactive gas glow discharge environment; simulating the reactive gas glow discharge using a beam of reactive ions (reactive ion beam etching), and carefully ex-situ analyzing surfaces etched in reactive gas glow discharges without air exposure. This paper, which summarises the state of this mostly unknown area of surface chemistry, will solely evaluate the work that was reported using the first of these methodologies. Understanding the bulk, surface, and interfacial events that take place during TiO2 photocatalysis can be done in a special way thanks to the discipline of surface science. This review presents new research that offers a molecular-level understanding of photon-initiated phenomena occurring at TiO2 surfaces from the standpoint of surface science. The structure of this review identifies seven major scientific issues.