Abstrait

On Thermally Controlled Light Propagation in Plasmonics Waveguide and Filter

Dong Liu, Mehdi Afshari-Bavil, Nader Daneshfar


An active ultra-compact plasmonic waveguide composed of a subwavelength slit and perforated in Vanadium Dioxide (VO2) followed by a metallic layer is proposed and numerically analyzed. Refractive index variation of VO2 by external stimuli provides a feasible way for tuning the optical properties of the waveguide. Varying the refractive index of VO2 corresponds with changing the phase of VO2 to the metallic state (“on” state). Consequently, the entire structure becomes a typical Metal-Insulator-Metal (MIM) waveguide that routes the incident light through the slit. In addition, during the “off” state, the incident light thereby propagates in the slit and VO2 medium and mitigates rapidly. By adding a MIM waveguide attached to the Fabry-Perot (FP) cavity, spectrally wide stopband and passband filtering features in the telecommunication frequency regime are demonstrated. Tailoring the resonance wavelength can be performed through the geometrical parameters. Such active plasmonic waveguides with high transmission, coupling, and compact size can be utilized in future fully integrated all plasmonic chip technology


Indexé dans

  • CASS
  • Google Scholar
  • Ouvrir la porte J
  • Infrastructure nationale du savoir de Chine (CNKI)
  • CiterFactor
  • Cosmos SI
  • Répertoire d’indexation des revues de recherche (DRJI)
  • Laboratoires secrets des moteurs de recherche
  • Facteur d’impact des articles scientifiques (SAJI))
  • ICMJE

Voir plus

Flyer