Abstrait

Modeling the cell cycle for discrete-event structures

Kritika Sharma


Computational modeling and the theory of nonlinear dynamical systems allow one to not simply describe the events of the cell cycle, but also to understand why these events occur, just as the theory of gravitation allows one to understand why cannonballs fly in parabolic arcs. The simplest examples of the eukaryotic cell cycle operate like autonomous oscillators. Here, we present the basic theory of oscillatory biochemical circuits in the context of the Xenopus embryonic cell cycle. We examine Boolean models, delay differential equation models, and especially ordinary differential equation (ODE) models. For ODE models, we explore what it takes to get oscillations out of two simple types of circuits (negative feedback loops and coupled positive and negative feedback loops). Finally, we review the procedures of linear stability analysis, which allow one to determine whether a given ODE model and a particular set of kinetic parameters will produce oscillations.


Avertissement: testCe résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

  • CASS
  • Google Scholar
  • Ouvrir la porte J
  • Infrastructure nationale du savoir de Chine (CNKI)
  • CiterFactor
  • Cosmos SI
  • Bibliothèque de revues électroniques
  • Répertoire d’indexation des revues de recherche (DRJI)
  • Laboratoires secrets des moteurs de recherche
  • ICMJE

Voir plus

Flyer