Abstrait

Hybrid quantum-behaved particle swarm algorithm for nonlinear complementary problems

Tiefeng Zhu, Xueying Liu


Combining amultiplier penalty functionmethod of dealingwith constraints using the quantumparticle swarmoptimization (QPSO) algorithm, a hybrid QPSO algorithm is proposed for solving nonlinear complementary problems. This method utilizes the advantages of the QPSO and the multiplier penalty function method. The non-feasible particles produced in the iterative process are dealtwith using the multiplier penalty function method to produce feasible particles. Numerical experiments show that the proposed algorithm is effective.


Avertissement: testCe résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

  • CASS
  • Google Scholar
  • Ouvrir la porte J
  • Infrastructure nationale du savoir de Chine (CNKI)
  • CiterFactor
  • Cosmos SI
  • Répertoire d’indexation des revues de recherche (DRJI)
  • Laboratoires secrets des moteurs de recherche
  • Facteur d’impact des articles scientifiques (SAJI))
  • ICMJE

Voir plus

Flyer