Abstrait

Graph kernels and applications in protein classification

Jiang Qiangrong, Xiong Zhikang, Zhai Can


Protein classification is a well established research field concerned with the discovery ofmoleculeÂ’s properties through informational techniques. Graphbased kernels provide a nice framework combining machine learning techniques with graph theory. In this paper we introduce a novel graph kernel method for annotating functional residues in protein structures.Astructure is first modeled as a protein contact graph, where nodes correspond to residues and edges connect spatially neighboring residues. In experiments on classification of graphmodels of proteins, themethod based onWeisfeiler- Lehman shortest path kernel with complement graphs outperformed other state-of-art methods.


Avertissement: testCe résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

  • CASS
  • Google Scholar
  • Ouvrir la porte J
  • Infrastructure nationale du savoir de Chine (CNKI)
  • CiterFactor
  • Cosmos SI
  • Bibliothèque de revues électroniques
  • Répertoire d’indexation des revues de recherche (DRJI)
  • Laboratoires secrets des moteurs de recherche
  • ICMJE

Voir plus

Flyer