Abstrait

Electromagnetic Field, Spin, and Gravitation as Characteristics of a Charged Quantum Particle Wave Function

Eliade Stefanescu


In this paper, a quantum particle is conceived as a packet of waves with invariant time-dependent phases for any change of coordinates. In this framework, we obtain the relativistic kinematics and dynamics, and the spin as a characteristic of the particle dynamics. When a field is considered in interaction with a quantum particle, the Lorentz force, and the Maxwell equations are obtained. For a quantum particle in a central gravitational field, we obtain the Newtonian acceleration with a correction specific to the Schwarzschild solution, which describes an increase of the gravitational field in the proximity of the gravitational center. We essentially show that a quantum particle is described by a distribution of conservative matter, moving according to the general theory of relativity.


Indexé dans

  • CASS
  • Google Scholar
  • Ouvrir la porte J
  • Infrastructure nationale du savoir de Chine (CNKI)
  • CiterFactor
  • Cosmos SI
  • Bibliothèque de revues électroniques
  • Répertoire d’indexation des revues de recherche (DRJI)
  • Laboratoires secrets des moteurs de recherche
  • ICMJE

Voir plus

Flyer