Abstrait

DNA-Based Label-Free Electrochemical Biosensors: From Concepts to Applications

James Stan


Deoxyribonucleic acids (DNAs) have been used as excellent biomaterials to construct a range of biosensors via interactions between DNAs and biomolecules or chemical substances. DNA-based electrochemical biosensors with excellent sensitivity and selectivity have been widely employed in bio-chemical analysis due to their ease of operation, quick response, and inexpensive cost. However, most DNA-based electrochemical biosensors involve the tagging of electroactive chemicals or nanomaterials on DNAs as signal read-out elements, which unavoidably results in complicated operation and high costs. Label-free techniques are solutions for DNA-based electrochemical biosensors that do not require extra assay chemicals or time-consuming procedures. Because of its simplicity and low cost, DNA-based label-free electrochemical biosensors have piqued the interest of researchers as a potential analytical tool. The concepts and applications of DNA-based label-free electrochemical biosensing devices, encompassing heterogeneous and homogeneous modes with diverse amplification techniques, have been discussed and reviewed extensively in this study. Furthermore, the current limitations and future prospects of DNA-based label-free electrochemical biosensors are discussed.


Avertissement: testCe résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

  • CASS
  • Google Scholar
  • Ouvrir la porte J
  • Infrastructure nationale du savoir de Chine (CNKI)
  • CiterFactor
  • Cosmos SI
  • Bibliothèque de revues électroniques
  • Répertoire d’indexation des revues de recherche (DRJI)
  • Laboratoires secrets des moteurs de recherche
  • ICMJE

Voir plus

Flyer