Abstrait

An improved method on rough set theory and application in prediction of pest attack

Tiecheng Bai, Hongbin Meng, Qingsong Jiang


In order to improve the forecasting accuracy of the occurrence period of insect pests, this paper puts forward a kind of improvedmethod of attribute reduction on rough set theory based on discernibility matrix. And, the forecasting model of insect pests is established by using improved rough set and BP network. The test results show that improved algorithm can reduce the complexity of computing, the number of conditional attribute reduction and the number of condition attributes after reduction than the original algorithm has obvious advantages. the average accuracy of the forecasting model reached to 90%.


Avertissement: testCe résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Indexé dans

  • CASS
  • Google Scholar
  • Ouvrir la porte J
  • Infrastructure nationale du savoir de Chine (CNKI)
  • CiterFactor
  • Cosmos SI
  • MIAR
  • Laboratoires secrets des moteurs de recherche
  • Euro Pub
  • Université de Barcelone
  • ICMJE

Voir plus

Flyer